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Generation of Frames

F. Bagarello*

It is well known that, given a generic frame, there exists a unique frame operator
which satisfies, together with its adjoint, a double operator inequality. In this paper
we start considering the inverse problem, that is how to associate a frame to certain
operators satisfying the same kind of inequality. The main motivation of our analysis is
the possibility of using frame theory in the discussion of some aspects of the quantum
time evolution, both for open and for closed physical systems.
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1. INTRODUCTION

Whenever we deal with a (separable) Hilbert spacthe first problem we
usually face with is the way in which an arbitrary elemdn& H can be con-
veniently expressed. As we know the usual choice is to expami terms of
an orthonormal (o0.n.) basige,} of H: in this way the expansion is particu-
larly simple, f = (e, f)e,, and the Parseval equality holds,|(e,, f)|?> =
(Ralp

Sometimes, however, the conditions of our (mathematical or physical) prob-
lem force us to consider a set of vectdds,} which is no longer o.n. but is still a
basis ofH. We have a typical example of this situation when the $gt forms a
Riesz basis, see Cohehal.(1992) and references therein, that is a set of vectors
such that

— no®dy, lies within the closure of the finite linear span of the ottbgr and
— 3A > 0, B < oo so that, for anyf € H,

AlFIZ <D [(@n, F)I? < BIIFII2. (1.1)
n

This last property implies that the vectors of the 88t} generates the whole
Hilbert space, while the first condition says that these vectors are linearly inde-
pendent.
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Many examples moreover also exist of sets of vectors which are not Riesz
bases but still have a relevant role in the descriptiortofFor instance, if we
consider any overcomplete set of coherent states (Klander and Streater, 1985), this
set satisfies a relation similar to the one in (1.1), but the vectors are not linearly
independent. Equation (1.1) is also satisfied by some sets of wavelets, (Daubechies,
1992). Sets of vectors of this kind are known as frames. In other words, we can say
that a frame is a set of generatorstofbut, since the vectors are not independent,
the way in which a vectof € H can be expanded in terms of these vectors is, in
general, not unigue.

Many mathematical properties of the frames have been discussed in the lit-
erature, see Alet al. (2000) and Casazza (2000) for an overview. In reference
(Bagarello, 1997), the construction of different frames starting from a fixed one,
and the construction of a “faster” perturbation scheme has been considered. Here
two questions were raised: is it possible to “reverse” the procedure which, given
a frameZ, produces a unique frame operakr? And, if this can be done, is this
frame unique?

The second question is the following: in Bagarello (1997) we have shown
how to construct a (1,1)-frame starting from af, B)-frame. The role of the
frame bounds was crucial in order not to have a trivial result. In fact, if we follow
the procedure developed in Bagarello (1997), every (1,1)-frame can only produce
itself. So it is natural to wonder whether there exists some different way to obtain
an (A, B)-frame starting from a (1, 1)-frame, for some fixed positive humbers
andB. We will be more precise in the next section.

In this paper we answer to both these questions in a satisfactorily and nat-
ural way. This is the content of the next two sections, respectively related to
self-adjoint and non-self-adjoimfenerating operatorshat is, roughly speaking,
bounded operators in the Hilbert space, satisfying a certain operatorial inequality
which produceframes.

In our examples, contained in Sections 3 and 4, we will consider with par-
ticular attention the problem of the stability of a given frame under quantum
mechanical time evolution, both for open and for closed systems, as well as other
aspects related to quantum mechanics.

2. NOTATION AND KNOWN RESULTS

In this section we will recall some known results about frames in order
to keep the paper self-contained and to introduce our notation. Most of these
results can be found in Daubechies (1992), Bagarello (1997), and Daubechies
(1990).

Let H be a Hilbert space andl a given set of indexes. Let al§o= {¢n, n €
J}, be a set of vectors dff. We say thatZ is an (A,B)frame of H if there
exist two positive constants, called frame bounds, B < B < oo, such that
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the inequalities

ALFIZ < g, £)12 < Bl )12 (2.1)
n

hold for any f € H.
To any such sef can be associated a bounded oper&tor H — 12(J) =
{{Calnes © Znesltnl?} < oo defined by the formula

VieM (Fzf) = (g, f). 2.2)

We will omit the dependence ah of F in the following. Equation (2.1) implies
that||F || < +/B, so thatF is bounded. The adjoint of the operafer Ff, which
mapsl2(J) into H, is such that

Vic) el?(J) Flc=) ca (2.3)
ied

Condition (2.1) can be rewritten in the following equivalent way:
Al < F'F < BI (2.4)

which must be understood in the sense of the operators (Reed and Simon, 1980).
We have used to identify the identity operator iB(7).

Condition (2.4) implies that the operatd{F) 1, exists and is still bounded
in H. In other terms, bottF fF and FF)~* belong toB(H).

Following the literature, see Daubechies (1992) for instance, one defines the
dual frameof Z, Z, as the set of vectoig defined by

o =FTF) Yy Vvied (2.5)

In particular (Daubechies, 1997j,is a (%, %)—frame. Defining now a new
operator betweert{ and12(J) as F = F(FTF)™1, it is easy to prove thaF
is such that £ f)i = (@, f), for all f e H. Moreover, the following relations
hold: FTF = F1F =I. These equalities produce the following reconstruction

formulas:
f=> (o, )& =D (@, o (2.6)
ied ied

forall f € H (Daubechies, 1992). In (Daubechies, 1992) itis also discussed that,
sinceg; = ¢ foralli € J, then the dual frame of the sétis nothing but the set
7 itself.

A generalization of this procedure has been proposed in Bagarello (1997): let
us define the operator

Fi=FTF. (2.7
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The norm of this operator is bounded from above and from befow, | 7| <
B, F1 is positive,F; > 0, self-adjoint,F; = ]-"f, and its action on a given vector
of His given byF1 f = Zicy(pi, Floi.

Let E; be the family of spectral operators &%. We can write, making use
of the spectral theorem.

B
(]-‘1c1>,l11)=/ A (E, @, ¥), Vb, W eH. (2.8)
A

Because of the fact that9 A < B < oo, we can define arbitrary powers, positive
and negative, of the operatéi:

B
(Fou®, W) = ((F*F)*®, W) / AYd(E, @, W), (2.9)

A

for all ®, ¥ € H, andVa € R. This implies that
ANI<F, <Bl Vy<O0 (2.10)
B'I<F, <Al Vy=>0. (2.11)

Given an arbitrary real numbaerlet us define the following vectors:
o = F,o Viel, (2.12)

and let us calZ® the set of these vectors. In Bagarello (1997) we proved that all
these sets are framesfi In particularZ® is an (A% +1, B2 +1)-frame ifa > —1,
isa (1, 1)-frame it = —3, and is a B2+, A%*1)-frame ifo < —3.

As it is clear, this procedure produces a tight frame with frame bounds equal
tol startmg from a generic frame. Of course this does not imply that the vectors
(p( 1/2) form an o.n. basis since normalization of these vectors is not ensured.

The reconstruction formula (2.6) can now be generalized in the following
way (Bagarello, 1997): for any € H and for any read, we have

f = (o, flp (2.13)
ied

We refer to Bagarello (1997) for further comments and examples. Here we
want to be more precise about the two problems already mentioned in Section 1.
The first one is the following: given a frame, we know that it gives rise to a
single operatofF; = FTF. Now, given a self-adjoint operatdf, which satisfies
an inequality like (2.4), is it possible to associate to this operator a single frame? In
Bagarello (1997) we constructed a counterexample for a finite-dimensional Hilbert
space, showing that this frame, if it exists, is not necessarily unique. We will see in
the next section that also for infinite-dimensional Hilbert spaces the uniqueness is
not guaranteed, while the construction of such a frame can be easily undertaken.
Our result will appear as a concrete application to the framework developed in
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Bagarello (1997) of the fact that any bounded, surjective operator applied on an
0.n. basis or to a frame still yields a frame.

The second open problem is closely related to the previous one: given an
(A, B)-frame {¢i} and its related operatafi, we find a unique (1, 1)-frame
{cpi(’l 2)} obtained as in (2.12). Now, given a (1, 1)-frafag}, is it possible to
find a (unique) A, B)-frame {¥;} such thatp; = W /?? Again the answer is
in general negative and this can be shown simply by giving an example of (1,
1)-frame which can be obtained by different nontight frames (Bagarello, 1997).
However, these different frames are not completely unrelated among them, and in
the next section we will show, among other things, which kind of relations do exist
between the frame operators associated to the frggesand{¢; }.

3. REVERSING THE PROCEDURE

In this section we will consider the following question: given a self-adjoint
operatorZ : H —> H such that two positive constamsandB,0< A < B < o0
exist satisfying

Al < Z < BI, (3.1)

is it possible to define one (or more) frame in some segls¢edto Z?

Of course if we do not specify what has to be meantdgted this question
has no much meaning. First of all we can observe already at this stage that unique-
ness is not very reasonable, since if @ B)-frame can be constructed starting
from Z, then an entire family of frames can be easily generated simply following
the procedure proposed in the previous section and in reference (Bagarello, 1997),
at least if A # 1 andB # 1. It is clear, then, that all these frames are, in some
sense, related to the operatbr

In what follows we will propose a very sharp procedure to generate frames
starting from the operataf aboveandfrom another given frame or from a given
0.n. basis. For this reason we spealgeheration of framesThe main property
of Z which will be used in the following is the possibility of defining, via spectral
theorem,Z* for any real value of.

It is worth mentioning that part of our results, and more specifically the first
part of Proposition 1 below, are close to those in Casazza (2000), where the notion
of preframe operator has been introduced and analyzed.

We begin with the following Proposition, where we split the statement in two
in order to stress the differences in the proof when considering an o.n. basis or
simply a frame.

Proposition 1. Let Z be a self-adjoint operator ZH — H such that inequal-
ity (3.1) holds for a given pair (AB) of strictly positive quantitie)< A < B
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< o0. Let B={e,, n € J} be an o.n. basis dff andZ = {¢,, n € J} a (C, D)-
frame,0< C < D < o0. Then: defining

n® = Z%,, VnelJVaeR (3.2)

the setZ,w = (n®, n € J} is an (A%, B*)-frame ifa > 0, and a(B%, A%)-
frame ifa < 0.
Also, defining

d@ = 7%, VneJ,VaeR (3.3)

then the seffe() = (@Y, n € J} is an (A*C, B#D)-frame ifa > 0, and a
(B*C, A*D)-frame ifa < 0.

Proof: The proof of the first statement is an easy consequence of the Parceval
equality for5: for all f € H we have

SOE @) = 31z f e 2 = 124 112 = (F, 22 1),

nel nel
The conclusion follows from the definition of frame and from inequalities (2.10)
and (2.11) forZ.
The second statement requires more care, since the Parceval equality does
not hold for frames. Let us call the frame operator associatedtathenT must
satisfy the inequalitCI < T'T < DI. Therefore we have, for all € H,

ST @) =3 1(F 2= D 1z pn) 2= Y I(T(Z )l

neld ned neld neld
= [I(T(Z* DIZ = (T(Z° ), T(Z* f)) = ((z* ), TIT(Z* f)),

which, using the bounds oh! T, gives

Clzef2 < |(f, @@)|* < Djz* 2.
neld

As before, the conclusion follows from the inequalities @f, (2.10) and
(2.11). O

Remarks

(1) Obviously, it is clear that the first statement is a simple consequence of
the second one, since an o.n. basis is simply a (1, 1)-frame of normalized
vectors. However, since the proofs above are significantly different, we
have chosen to consider the two situations separately.

(2) Secondly, if we taker = 0 above, it is clear thaZ* =1, so that it is
obvious that the transformed sets coincide with the original ones and, in
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fact,Z,) is a (1, 1)-frame of normalized vectors (i.e. again an o.n. basis),
while Zy(q) is again a €, D)-frame. Ifa = 3, then the sef, 37 is an
(A, B)-frame. This, in a certain sense, reverses the approach sketched in
the previous section where a (1, 1)-frame was built starting from a given
(A, B)-frame. Here we are starting with a particular (1, 1)-frame, that is
with an o.n. basis, and we construct & 8)-frame.

(3) Finally, this result extends, in a certain sense, the one in Bagarello (1997)
since the operatoZ which produces the (1, 1)-frame starting framn
needs not to beF; = R'R, R being a given frame operator.

Let now Z be agenerating operatqrthat is an operator ofi{ satisfying
the hypotheses of Proposition 1. We can ds® produce frames, starting from
a given o.n. basi$. Let @ be as in (3.2). Proposition 1 ensures that the set
(n®} is a frame, whose frame bounds depend on the value dhe standard
procedure, therefore, allows us to associate8} a frame operatoiX,, defined
as Ko fn = (0@, ), f € H. Its adjoint X}, is defined as usual and we have
XIXo f = Zney(n®, £)n®. Itis easy to deduce now a relation betweghand
X.. This relation is

X FlIZ =122 F12,, VfeH, (3.9

and it follows from the following equalities:

I Xe FIIZ = (Xa £, Xo T) = (f, XI X, F) Z\n@‘)f

neld

= len, Z*H)2 =127 13,
neld
which can still be rewritten asX, Z=%gl|;= = ||g||« for all g in H. Moreover, this
equality implies that

I Xe Z7%lBr,12) = 1, (3.5)

where || - - - [|g¢,12) iS the norm in the Banach space of the bounded operators
mappingH into 12(J). Notice that, whileZ is given a priori, and it is therefore
independent of the basi X, depends on the choice of the o0.n. basis originating
the frame{n®@ = Z*e,}. Nevertheless, equality (3.4) implies thgX, f| turns
out to be independent of the choice®ffor any f € H.

The relation between the two operatofs and Z¢ can be further clarified
by introducing an unitary map, which also depends on the o.n. baBisf H,
defined in the following way:

Ug:'H — 12(J) such that, given
feH, f =) fuen, thenUp(f)={fy,neJ}. (3.6)
n
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Incidentally, from this definition we deduce tHag is nothing but the adjoint of
the preframe operator wrt the o0.n. bass}.
It is easy to check now that,, andZ* are related by the following equation

X, = UpZ®. (3.7)

Indeed we have, for any givert € H, (X, f)n=n®, f)=(e,, Z%f),
while UgZ* ), = (Ug(Zm{€m, Z% f)em))n = (en, Z% f), sothat Eq. (3.7) follows.

Equality (3.4) is now simply a consequence of (3.7) and of the unitarity of
the operatol).

If we consider the same problem for a frame instead of an o.n. basis the
situation is, at least formally, even simpler. In fact, in this case, there is no need
for introducing the operatdds. The computation is rather direct: callidg the
frame operator associated to the &)} we get

(Yo f)n = <q>§1a), f) = (gn, Z° ) = (F(Z° f))n,

F being the frame operator of the s&tTherefore, due to the arbitrariness fof
we get

Y, = Fz°. (3.8)

Notice that, ifZ is an 0.n. basis, theh is nothing butJ (7Z) so that the result
in (3.7) is recovered.
Let us now consider some examples.

3.1. Example 1

In this first example, we will show how to produce explicitly a class of frame
generators, and what this procedure gives in some explicit situationQ hetan
orthogonal projection operator acting ®a This means that

Q=Q*=Q (3.9)

LetthenA andB be two positive constants such that the usual inequakty® <
B <, is satisfied. We define an operator

X = Al + (B — A)Q, (3.10)

which is clearly a self-adjoint operator 6t SinceX — Al = (B — A)Q = (B —
A)Q'Q, it follows that, wheneveA # B, X — Al is a positive operator. Analo-
gouslyBI — X = (B — A)(I — Q) = (B — A)(I — Q)'(I — Q) is a positive oper-
ator, under the same hypothesisdandB (if A = B everything is simpler since
X = Al and the example becomes trivial). Thereféfe< X < Bl and X is a
generating operator.

Producing orthogonal projection operators is not a problem: the easiest way
consists in starting with an o.n. basis (which nothing has to do in general with
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the basis of Proposition 1), and use this basis in the following canonical way.
Let, for instanceC = {h,, n € N} be such a basis. Lex ¢ N be a (finite) set of
indexes. We cal@ ; the following (finite rank) operatoQ; f = Xncj(hn, f)hp,
forany f € H. Itis clear thatQ; is self-adjoint and tha®; = % so thatQ; is

an orthogonal projection. Let; = Al + (B — A)Qj. This is a frame generator.
Notice that, if we také3 = C above, then we do not go too far:

Bh, ifneJ,

Ho=Xoha =1 A ifng

This means that we still get an orthogonal set but we lose (in a trivial way) the
normalization of the vectors. More interesting is the result if we apfyyto an
0.n. basig3 different fromC. The resulting vectors of our frame are now

pn = X6 = &(1+ (B— A Qsenl>) + (B—A) Y (a, Qienla.  (3.11)
I#n

Just to be concrete we now give an example of this constructiofifer
L£?(R). We consider the following well known o.n. bases®@{R):

By = {Hjx(x) =272H@2 ' x — k), i,k ez},

where
1
1 if 0,-1,
if X € [ 2}
H(x) = 1
) -1 ifxe[—,l},
2
0 otherwise
and
— _ 1 —x?/2
By = {‘Pn(x) = We Hn(x), n e No} ,

with Ha(x) = (—1)"e’ (& ). The first exampleBy, is the Haar o.n. basis
arising in the multiresolution analysis 6f(R) (Daubechier, 1992) whilB, is the

0.n. set of eigenfunctions of the harmonic oscillator, as obtained in any elementary
textbook of quantum mechanics. Let us now see first Bpwan be used to obtain

a frame from3;. Then we will show the opposite.

In order to keep the construction simple, we give here only the simplest ex-
ample, which is obtained by considering the simplest nontrivial sét= {0}. The
extension to more elements is only a matter of computationQgdie defined as
(Qo)(X) = (w0, F)po(x), f(x) € LX(R). Then X = AL+ (B — A){go, .)¢o(X),
and

Hijk(X) = XHjk(X) = AHjk(X) + (B — A){go, Hj)¢o(X).
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It follows that:

if A= B =1thenH;(x) = Hj(X);

if A= B # 1 thenH;k(x) = AH,(x), so that only the normalization is
changed;

if A# B everyH;(x) is modified by the action oK. However, with this
simple choice ofl, it is clear that this change reduces to an addictive contribution
which is proportional to a single functiogg(x), but with a constant which depends
on j andk. This situation can be made more interesting simply by taking more
elements in the definition of.

Exchanging the role d8; and5, we can also check, for instance, that the set
of functions

@n(X) = Agn(X) + (B — A)(Ho,0, ¥n) Ho,o(X)
is a frame, and the same remarks as above still apply.

In recent literature the role of the time evolution of certain sets in the Hilbert
space has been discussed in connection with quantum mechanical systems. In
particular in Klauder (2001), Antoinet al. (2001), and Crawford (2000), among
the others, the so-called temporally stable coherent states have been discussed. A
temporally stable coherent state is a coherent gté&d¢ whose time evolution still
yields a coherent state. Since coherent states are deeply related with frames, it is
natural to consider the same kind of problem for frames, and this is the content
of the next example where we will discuss an open quantum system and its time
evolution, provided by a semigroup of bounded operators on a certain Hilbert space
‘H. The outcome will be that the time evolution of a frame is still a frame, even
if the frame bounds are, in general, modified during the time evolution. We will
consider a closed system, arising, for instance, in the analysis of low-temperature
superconductivity, in subsection 3.3. The next example is related to a not unitary
operator, typical of quantum open systems.

3.2. Example 2

Leta anda’ be two operators satisfying the CCR algetaad] = I, andN
be the closure oNy = afa. It is well known that, callingp, the vector annihiled
by a, app = 0, then the vectorg, = %(ﬁo, n e N U {0}, are an o.n. basis of
the Hilbert spacé+. This is the typical algebraic structure behind any quantum
harmonic oscillator. Let us now define the self-adjointoperaterI + (N + 1)~
It is straightforward to check that eagh is an eigenstate df with eigenvalue

o=£. This implies that
I<L<2l (3.12)

SincelL is bounded there is no problem in defining the family of bounded and

self-adjoint operator3; = e'!, with t a positive parameter which we can think
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of as the time. It is clear that, is also an eigenstate af with eigenvalueez_ﬁ‘.
MoreoverT; satisfies the following inequality:

el < T <&l (3.13)

Let now E = {un, n € J} be a fixed C, D)-frame. We defineE® = {u(M =
Ltn, n € J},and2@(t) = {u@(t) = Tiwn, n € J}.Sinced Ty = LT = TiL, we
have

& W Olco = Litn = ), (3.14)
which relates the two sets. Moreover, Proposition 1 states thatidtand £(2)
are frames. In particula&® is a (C, 4D)-frame, whileE®@)(t) is a C€*, De*)-
frame. Therefore the time evolutidih maps a frame in another frame. It is worth
remarking that the frame bounds &fY are not given, as one could expect, by
the time derivative of those &@)(t) (for t = 0), even if Eq. (3.14) holds. Finally,
it is clear that the time derivative of the s&f?(t), which is made up of vectors
Lu®@(t) = Tyud, is still a frame with bound€ € and Dedt.

3.3. Example 3

We discuss here in some details an example which is closely related to a
nontrivial model proposed in Quantum Many-Body in order to explain the phase
transition giving rise to superconductivity at low temperature. The details of the
model are given in Buffet and Martin (1978) and Martin (1979). This is a discrete
model of an open system in which the matter, described in terms of Pauli matrices,
interacts with a fermionic background. The model is defined on afinite lattice which
we take here, for sake of simplicity, to consist of a single site. We will remove
this assumption at the end of our analysis. The algebra of the Pauli matrices, in
our single-lattice model, is given by {, 0] = 6%, [0%, 6% = F20 %, wh|le the
canonical antlcommutauon relatiorfer the fermionic operators arg;, a; } =
Sij, {ai, a5} = {aI a; } = 0, wherei andj take values between 1 aind N belng
the different modes of the reservoir. Following (Buffet and Martin, 1978; Martin,
1979) we define

H :HO+)\4H| =(Hs+ Hr)+)\-H|,

whereHs = €09 H, = Z 1e.a1 a; andH, = ota(f) 4+ o~af(f). Heree anda

are real constants., are aII nonnegatlve _and we have used the following notation:
a(f) =N f(i) andal(f) = 1a1 f(|) The functionf is a test function.

This model is exactly the one S|te verS|on of the one discussed in Buffet and Martin
(1978) and Martin (1979) witly = 0, i.e. neglecting the mean-field interaction of
the matter.
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The eigenstates dfs are clearly

v, = <(])') and V_ = <(1)) Hs¥, = E, ¥,,

whereE, = ye andy = +. The eigenstates &1, are obtained acting with theze-
ation operatorsaiT on thevacuum stateo, which is defined by the following prop-
erty:ajgo = Oforalli =1,..., N. We putgp,, _n, = (a{)nl e (a,T\,)”MpO, where
eachn; canonly be Oor 1, ant; ¢n,, ny = En,....ny®@ny,...ny, WhereE,, o, =

TN €, and the sum is restricted to those indekssich thah; = 1. Itis clear that
the Hilbert space of the matter is simi@y, while the Hilbert space of the reservoir,
Hyer, is the linear span of the sét= {¢n,, . n,, Suchthat; =0, Ivi =1,... N}.

We callH = C?® Hyer. It is clear thatH is a finite-dimensional Hilbert space.

It is also easy to prove, using canonical estimates, thaatisfies the following
bound||H| < B, whereB = [¢| + ZN ¢ + 2|A|ZN | f(i)]. Since the spectrum

of H, as well as the spectrum bfy, is discrete, we deduce thatBI < H < BI.
Therefore, for any positivé the operatoﬂ = H + (B + 8)I, whichis completely
equivalent toH from the point of view of the dynamics of the system, satisfies the
following inequality:5T < H < (2B + 8)I. ThereforeH can be used to modify the
0.n. basis of{ whose vectors ar®,) n,,.ny = ¥, ® ¢n,,...n, t0 Obtain different
frames. In particular, if we put

() )
n(;‘j)'nlvmynN = Ha(b(y),nl,...,nN,

o being any real number, then the $gf) | }is an 62, (2B + 6)2)-frame
if « > 0and an ((B + §)*, §)-frame ifa < 0.

The same conclusion holds true when we odd more sites to our lattice, as
soon as the background is kept fermionic. The situation requires more care in the
thermodynamical limitil — oo) or for a bosonic reservoir. The reason for this is
that unbounded operators necessarily appear in the game, and the above estimates
cannot hold any longer.

In order to be concrete we see now what happens in the simplest situation, that
is whenN = 1. In this case the dimension ®f is 4 and an o.n. basis consists of
the vectorsb,) o, (1)1, P(_).0, andd(_y 1. The action o on these vectors can
easily be computed, and it gives the following vect@;l(‘f%l =(€+e1+B+9)

D41, 1,0 = (=& + B+ )P0, 1) 0 = € + B+ 80 + 2 F(DO(1,
and '78,1 =(—€+e1+B+8)Py 1+ Af ()P0, Which, as we have seen,
form a (2, (2B + §)?)-frame in our Hilbert space.

We want to end this section with a remark concerning the possibility of ex-
tracting an o.n. basis from a giveA(B)-frame. Both Proposition 1 and the results
discussed in Bagarello (1997), just to cite the results closest to our set up, teaches
how to get a (1,1)-frame from a generid,(B)-frame. But the normalization of
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the vectors of the new frame cannot be implemented without breaking, in general,
the frame condition (1.1). However, the following Lemma can be proved and gives
an interesting constraint.

Lemma. LetB = {¢n, N € J} be an (A B)-frame and Z a self-adjoint operator
defined onH such that A < Z < BI. A necessary condition for the sBf? =
{p® = Z72¢,, n € J} being an o.n. basis is

VA< |gnll <vVB, ¥nel (3.15)

Proof: From Proposition 1 we deduce that? is a (1, 1)-frame. To conclude
thatB@ is also an o0.n. set we still have to chek that eg(® is normalized, that
is that(gn, Z71¢,) = 1 for anyn e J. Using the hypothesis of this can be true
only if B™||gnl2 < 1 < A~Y¢n|I, so that our statement follows. o

4. MORE FRAME GENERATORS

In this section we extend the procedure discussed before so to include unitary
operators, which are not frame generators with the above definition since they can-
not satisfy an operator inequality like the one in (3.1). The need for this extension
follows from the very well known fact that any unitary operator maps an o.n. basis
into another o.n. basis, and(B)-frames into @, B)-frames. Moreover, unitary
operators are also physically quite relevant since, for instance, they describe the
time evolution of conservative (closed) quantum mechanical systems.

Let T be an operator which maps the Hilbert spatito itself and such that
two real positive constantsandp exist, 0< « < 8 < oo for which

ol < TIT < BL (4.1)

Of course, evenif (4.1) ensures us thaT is invertible, this is not necessarily
true for the operatoF by itself, since it only has to satisfy the bounds < || T| <
/B which are not sufficient to guarantee the invertibilityTof Another obvious
remark is that, even if condition (4.1) strongly resembles the usual inequality that
a frame operator (and its adjoint) must satisfy, a big difference really exists since
T is required to maf into H, while the frame operator mafi into a different
Hilbert spacel?(J).

We have the following

Proposition 2. Let T be an operator T H — H such that inequality (4.1)
holds for a given paird, 8) of strictly positive quantitied) < o < 8 < oo. Let
B = {e,,n € J} be an o.n. basis off andZ = {¢n, n € J}a(C, D)-frame,0 <
C <D< oo.Then:
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if we define
mi=Tle,, VnelJ, (4.2)

the set3, = {nn, h € J} is an(«, B)-frame.
Also, defining

&y :=Tlg,, Vheld, (4.3)
then the sefq = {®,, n € J}is an @C, gD)-frame.

The proofs of both these statements are quite similar to those of Proposition
1 and will be omitted here.

Even if T is not assumed to be invertible, since it is a bounded operator it is
clear thatT' makes sense for any positive valuel oThe extension of the above
result toT' is not straightforward but when the operafois normal, [T, T1] = 0,
which is surely the case if is unitary. In this case, using the same notation as
above, we get the following natural results, which extend what stated above:

the set of vectorg!) := (T1)'e, is an @', g')-frame;

the set of vector®{) := (T1)'¢, is an ¢'C, ' D)-frame;

4.1. Example 4

We go back now to consider the time evolution for a closed quantum mechan-
ical systemS, which is described by the Sadinger equation:

d
| W) = Hw(),

Here W(t) is the wave function describin§ at timet andH is its hamiltonian,

that is the energy aof, which is a self-adjoint operator. As an example, you could
consider the operatdd given in Subsection 3.3 of the previous example or its
modified formH. It may happen already for very simple systems tHais an
unbounded operator, so thet cannot satisfy any inequality like (3.1). This is
not the case in Subsection 3.3, where the hamiltonian is bounded. Therefore, but
for some particular form of the hamiltonian, we cannot produce frames using the
hamiltonian directly. However, this is not the end of the story iis the value of

the wave function fot = 0 it is well known that, at least iH does not depend
explicitly ont, the solution of the Schidinger equation above can be written as
w(t) = e "'y, since the unitary operater'Ht, which can be defined both for
bounded and unbounded hamiltonians, describes the time evolutibim die so-
called Schodinger-representation. This operator clearly does not satisfy inequality
(3.1) for any choice oA andB, since its spectrum lies on the unit cir¢i¢ = 1. We

can conclude that, in general, both the hamiltonian antdrineevolution operator

e 1t do not fit into the scheme developed in the previous section. However, it is
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trivial to check that for any physical hamiltoni&h, bounded or nog'H! satisfies
the hypotheses of Proposition 2 above, siree{t)fe 'Ht =T, so that it can be
used, for instance, to construct new frames starting from a given one.

For instance, let nowWg,} be an &, g)-frame. We can expand asV¥ =
SnCngn. Writing W(t) as W(t) = €"(Znchen) = Zncn(€ten), this equation
says that also the sgd "t ¢, } of t-depending vectorgHt ¢y, can be used to expand
vectors ofH. This is not a surprise sinde'Hp,} is again and, g)-frame, as itis
easily seen both with a direct computation and using Proposition 2. This result can
be seen again as an evidence of time stability of frames of the same kind discussed
in Section 3. In the particular case in whiehsatisfies (3.1) another frame can be
generated starting froifp,}, which is essentially (but for the imaginary unjthe
time derivative oH! g, (computed fot = 0). Itis not surprising that, as already
seen in Subsection 3.2, there is in general no relation between the frame bounds
of the two different frames.

In this example the generator operator is a unitary operator arising from the
guantum evolution of a closed system. However, condition (4.1) is also satisfied
trivially if T is simply an isometry, that is TTT =T but TTT # I. Of course
isometries which are not unitary operators only existin infinite-dimensional Hilbert
spaces. We refer to Halmos (1967) for some examples.

5. OUTCOME AND FUTURE PLANS

We have seen how a class of bounded operators, self-adjoint or not, can be
used to construct frames. This construction does not produce an unique result,
since this depends on the o.n. basis or the frame which, in a certain sense, we are
perturbing

We have given several examples, some of them arising from quantum me-
chanical problem which show that the time evolution of both closed and open
systems maps frames into frames.

What is still to be understood, in our opinion, is whether there exists a deeper
relation between a frame generator and a frame, of the same kind of that which
associates to any self-adjoint operator an unique (up to degenerations) o.n. basis
made up with its eigenvectors.

Also, it would be interesting to understand if and how an o.n. basis can
be extracted from a givenA( B)-frame, completing in this way the necessary
condition given in the Lemma above.

Finally, we believe that the time stability of frames deserve a deeper investiga-
tion and that it would be rather interesting finding concrete physical applications.
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